

RECONSTITUIÇÃO DA AGITAÇÃO MARÍTIMA NOS AÇORES

Sonia Ponce de León, Carlos Guedes Soares

Unidade de Engenharia e Tecnologia Naval, Instituto Superior Técnico Pavilhão Central. Av. Rovisco Pais 1049-001 Lisboa sponce@mar.ist.utl.pt, guedess@mar.ist.utl.pt

RESUMO

O conhecimento das condições da agitação marítima em regiões de Ilhas é importante para o tráfego marítimo de navios de pequena e grandes dimensões que percorrem a proximidade dos portos e as distâncias intercontinentais; assim como também é essencial para obras de engenharia costeira e portuária.

A reconstituição da agitação marítima em regiões afastadas do continente europeu como o arquipélago dos Açores, requer a representação de grelhas de alta resolução que permitam obter as formas e dimensões semelhantes às nove ilhas açorianas. Uma série de processos físicos associados à agitação marítima tem lugar entre as ilhas, assim ocorre a interacção de grupos de ondas de diferentes origens e período.

O objectivo deste estudo é a reconstituição da agitação marítima numa região de Portugal caracterizada pela actividade marítima. O estudo foi desenvolvido utilizando o modelo WAM-PRO [3] que considera os processos físicos típicos que influenciam a agitação marítima. Poucos são os trabalhos de agitação marítima específicos na região dos Açores. *Ponce de León and Guedes Soares (2005)* reconstituíram a agitação marítima nos Açores e estudaram o efeito sombra das ilhas e a influência destas ilhas na costa continental de Portugal.

Os campos de vento utilizados foram do Projecto HIPOCAS [2] para uma análise com grelha mais fina na região dos Açores representadas com uma grelha de 0.025°.

Neste trabalho apresentam-se os resultados de reconstituição da agitação marítima nas águas interiores do arquipélago dos Açores, utilizam-se grelhas aninhadas. O regime de ondas estuda-se para o período do Inverno de 1994. A simulação com alta resolução (1/40º em Latitude e Longitude) permitiu observar o fenómeno de sombra que as ilhas Açores exercem e que protege certas zonas destas mediante uma redução da energia do "swell" do Atlântico Norte. Estudaram-se em especial patrões de ondas de dois sectores principais, do W e NW. Tenta-se ainda caracterizar a agitação marítima durante o Inverno e o verão de 1994.

1. INTRODUÇÃO

O arquipélago dos Açores está localizado no Oceano Atlântico Norte entre Europa, América do Norte e África. Este está caracterizado por uma sismicidade relativamente forte e são Ilhas volcânicas com uma paisagem típica de formações volcânicas com agudos picos e falhas, crateras e campos de lava.

O arquipélago compõe-se de nove ilhas localizadas entre as longitudes 25° e 32° W, e as latitudes 37° e 40° N, consta de três grupos de Ilhas: o primeiro é o grupo Oeste que é o mais

afastado e solitário composto pelas Ilhas Flores e Corvo, o segundo composto pelo maior número de ilhas consta das Ilhas Terceira, Faial, Pico, São Jorge e Graciosa e o terceiro grupo compõese por São Miguel e Santa Maria. Sendo a Ilha de São Miguel a maior com uma área de 750 Km² [1]. O grupo mais para o Leste encontra-se a 760 milhas náuticas a Oeste de Portugal e o grupo Oeste encontra-se a umas 1070 milhas náuticas a E-SE de Cabo Race, Newfoundland. Todo o arquipélago está orientado de W-NW para E-SE e tem 330 milhas náuticas de extensão (Figure 1).

Quando se forma um centro de baixa pressão no oceano, tem lugar a formação de campos de ventos específicos associados com a baixa e gera-se um sistema de agitação marítima. Quando o sistema se propaga através do Oceano Atlântico Norte, encontra no meio do Atlântico o arquipélago dos Açores.

As ilhas estão expostas ao vento e à agitação marítima geradas pelas tempestades extra tropicais e pelos ciclones tropicais que se aproximam vindos de SW e S. De acordo com o livro "The Hurricane Handbook for the North Atlantic Ocean" [9], os ventos mais severos segundo os registos dos últimos 50 anos tiveram lugar durante o Inverno de 1980 (120mph). Naquela altura perderam-se muitos contentores de navios no oceano na região dos Açores. Eles anotaram que os ventos de tempestades extra tropicais e as vagas tendem a ter uma componente mais do W que os ciclones tropicais.

A topografia destas ilhas está feita de altos alcantilados basálticos, que em alguns casos são muito abruptos e são alternados com costas e baías. Estas costas baixas geralmente estão localizadas nas áreas mais protegidas da acção das ondas e em muitos casos formam praias de areia. A batimetria das Ilhas é dominada por relevos vulcânicos submarinos irregulares com declives abruptos. As Ilhas dos Açores não têm plataforma continental, o que faz com que o fundo oceânico varie rapidamente em distâncias curtas da linha de costa, desde escassos metros até centenas de metros de profundidade (Figura 2).

O objectivo deste estudo é a reconstituição da agitação marítima numa região marcada por uma importante actividade marítima como é o arquipélago dos Açores. O estudo foi desenvolvido utilizando o modelo WAM-PRO [5] que considera os processos físicos típicos que influenciam a agitação marítima. Poucos são os trabalhos de agitação marítima específicos da região dos Açores. *Ponce de León* and *Guedes Soares* (2005) reconstituíram a agitação marítima nos Açores e estudaram o efeito de sombra das Ilhas e a influência destas ilhas na costa continental de Portugal.

Os campos de vento utilizados foram do Projecto HIPOCAS [2] para uma análise com grelha mais fina na região dos Açores representadas com uma grelha de 0.025°. Os resultados do NCEP [4] foram usados numa grelha fina REMO (Regional Model) de acordo com [3]. A saída REMO, descrita pelos autores [7], para *o Oceano NE Atlântico* foi então complementado com os campos de vento do NCEP naquelas regiões afastadas da Europa. Desta forma, cobre-se completamente o Oceano Atlântico Norte para se conseguir resolver melhor as escalas espaciais dos sistemas de vento e agitação marítima associadas a uma depressão atmosférica que frequentemente tem lugar na região das Ilhas dos Açores. O produto final é um campo de vento com resolução espacial de 0.5° em Latitude e Longitude. Para a grelha de alta resolução de 0.025° os ventos foram interpolados a partir da resolução de 0.5°.

2. O MODELO DE GERAÇÃO E PROPAGAÇÃO DE ONDAS

O modelo de reconstituição da agitação marítima de terceira geração, conhecido como WAM ciclo 4, descreve a evolução do espectro de ondas direccional F, através da equação de balanço da energia [8],

$$\frac{\partial F(f,\theta,\phi,\lambda,t)}{\partial t} + \nabla \cdot (C_g F) = S(f,\theta,\phi,\lambda,t)$$
(1)

4^as Jornadas Portuguesas de Engenharia Costeira e Portuária Angra do Heroísmo, 20 e 21 de Outubro de 2005

onde f é a frequência de onda, θ é a direcção média de propagação da onda, $\phi \in \lambda$ são, respectivamente, a latitude e a longitude e C_g é a velocidade de grupo. Geralmente, S é a soma dos três termos fonte,

$$S = S_{in} + S_{nl} + S_{ds} \tag{2}$$

onde S_{in} representa a acção do vento, S_{nl} as interacções não lineares entre ondas e S_{ds} a dissipação da energia de onda.

A dissipação da energia de onda, S_{ds} em águas pouco profundas, é representada através da soma de três contribuições diferentes,

$$S_{ds}(f,\theta) = S_{ds,w} + S_{ds,b} + S_{ds,br}$$
(3)

 $S_{ds,w}$ representa a dissipação devido à rebentação das ondas por acção do vento em águas profundas (whitecapping), $S_{ds,b}$ representa a dissipação da energia de onda por fricção com o fundo e $S_{ds,br}$ representa a dissipação devido à rebentação por acção da profundidade. Estes processos físicos foram implementados numericamente no modelo WAM-PRO, o qual contém o código original do modelo WAMc4 adaptado para águas pouco profundas e para aplicações com alta resolução.

3. MODELAÇÃO DA AGITAÇÃO MARÍTIMA NOS AÇORES

Para descrever a agitação marítima na região dos Açores foi desenhado um sistema de aninhamento de grelhas constituído de três malhas: uma de 1° que cobre todo o Atlântico Norte para gerar as condições de fronteira para a malha seguinte e cujos limites se apresentam na Figura 1, seguida da grelha aninhada de 0.25° onde se geram as condições de fronteira, para finalmente estudar a agitação marítima de alta resolução de 0.025°, e que exclui a Ilha do Corvo do domínio geográfico pela quantidade de pontos onde se calcula a equação de conservação de energia (Figura 2). A tabela 1 apresenta uma série de parâmetros das simulações realizadas.

Resolução das grelhas [[°]]	NGX	NGY	Pontos das grelhas	Passo de tempo de integração [s]	Tempo CPU
1	85	57	4845	600	5 horas
0.25	101	25	2525	300	3 horas
0.025	261	121	31581	60	189 horas~8 dias

 Tabela 1. Parâmetros numéricos das simulações

Os dados da batimetria foram extraídos da base de dados "*Naval Oceanographic Office DbDb* v4.2 web interface", com uma resolução de 2 minutos de grau em Latitude e Longitude e que foi interpolada espacialmente para a grelha de alta resolução 0.025°, para a fina e para a externa. Os

limites da grelha externa, de 1°, são 14° N, 70° N, 20° W, 64° W, seguida pela grelha fina de 0.25°, numa franja que se estende entre as Longitudes 8° W e 33° W e as Latitudes 35°N e 41°N, abrangendo a região compreendida entre o Arquipélago dos Açores até Portugal Continental (Figure 1). A reconstituição da agitação marítima para um mês na grelha externa levou 5 horas de cálculo para 4845 pontos de grelha. Já na grelha aninhada de 0.25° o número de pontos foi de 2525 e levou 3 horas de cálculo. O número de pontos cresceu até 31581 (Tabela I), quando se tratou da grelha de 0.025° para simular localmente a região dos Açores, o que foi levado a cabo para 1 mês, levou 8 dias de cálculo.

O mês de interesse neste estudo foi Fevereiro de 1994 como representativo do Inverno onde se observaram vários centros de baixa pressão na região dos Açores, o que resultava interessante para estudar a agitação marítima nesta região onde não se tem estudado em detalhe os fenómenos que perturbam as vagas ao interagir com as nove Ilhas do Atlântico Norte. Apresentam-se duas situações interessantes: quando as vagas vêm do Oeste e quando são do Noroeste. Para ter uma ideia da agitação marítima na época do Verão, simulou-se o mês de Julho de 1994.

Em relação a estudos de agitação marítima nos Açores mediante modelação numérica ou a partir de dados medidos, não foram encontrados trabalhos anteriores.

Figure 1 Grelhas ($\Delta x = \Delta y = 1^{\circ}$), fina ($\Delta x = \Delta y = 0.25^{\circ}$) e de alta resolução ($\Delta x = \Delta y = 0.025^{\circ}$) e posição da bóia de Figueira da Foz.

4^as Jornadas Portuguesas de Engenharia Costeira e Portuária Angra do Heroísmo, 20 e 21 de Outubro de 2005

Figure 2 Mapa da batimetria na região dos Açores. Fonte DbDbV.

4. DESCRIÇÃO DA AGITAÇÃO MARÍTIMA

Duas situações podem apresentar-se na região dos Açores no que respeita ao campo de ventos; situações que serão posteriormente reflectidas no campo de ondas. Na Figura 3 um centro de baixa pressão atmosférica aparece na região das Ilhas, a velocidade do vento é da ordem dos 27 m/s. Esta situação é uma das mais favoráveis para observar o efeito sombra das Ilhas com largo alcance, atingindo assim as costas de Portugal continental [9]. Já para a época de verão, existem situações de vento parecidas mas com velocidades inferiores, o que atenua a energia das ondas geradas por ventos da ordem dos 18 m/s (Figura 4).

O campo de vento do dia 11 de Fevereiro de 1994 (Figura 5), mostra como a variabilidade própria da região dos Açores fica excluída quando se tenta construir o campo de ventos com apenas quatro pontos extraídos da grelha de ventos de resolução 0.5° e se interpola para a grelha de alta resolução, especialmente desenhada para simular a agitação marítima nas vizinhanças do arquipélago Açoriano.

O facto de ter um campo de vento homogéneo (Figura 5), não influi notoriamente nos resultados simulados, pois a grelha de 0.025° da região dos Açores foi aninhada com as duas grelhas anteriores: uma externa de 1° e outra mais fina de 0.25° onde já está implícita a informação da energia de vagas típicas do Atlântico Norte e que chegam ao arquipélago dos Açores desde grandes distâncias e que no geral possuem uma energia significativa de grande poder destrutivo para portos e instalações hidrotécnicas.

O campo de ondas do dia 9 de Julho de 1994, por exemplo, mostra a circulação anticiclónica dos vectores da direcção média de propagação das ondas a Sul do grupo central de Ilhas (Figura 6). O mesmo não existe no campo de ventos (Figura 5), o que indica que o aninhamento das grelhas advectou para o interior do domínio da grelha de alta resolução toda aquela energia vinda

de outras partes do Atlântico Norte. Esse giro aparece também no mapa dos períodos de pico (Figura 7) e também se pode verificar no mapa de Hs da grelha externa de 1° a existência do mesmo (Figura 8); neste campo de ondas a existência das ilhas dos Açores fica excluída devido a resolução espacial utilizada na grelha externa.

Consegue-se obter precisamente o giro mencionado anteriormente, mediante a imposição dos espectros de ondas (condições de fronteira) nas fronteiras das grelhas a serem aninhadas, além disto, o efeito do vento é considerado, porém, no caso da grelha de alta resolução, como já foi dito anteriormente, o vento resulta homogéneo da interpolação feita internamente no modelo de ondas, a partir de escassos pontos de onde se tem a informação extraída da grelha de dados de vento HIPOCAS de 0.5° que abrange todo o Atlântico Norte.

Figure 3 Campo de vento na grelha de 1°. Data: Fevereiro 20, 1994 as 00 UTC. A direcção média da agitação marítima nos Açores é de SW, velocidades de vento da ordem dos 20 m/s.

4ªs Jornadas Portuguesas de Engenharia Costeira e Portuária Angra do Heroísmo, 20 e 21 de Outubro de 2005

Figure 4 Mapa de vento, velocidade de vento em m/s, grelha externa ($\Delta x = \Delta y = 1^{\circ}$).

Figure 5 Mapa de vento do dia 09-07-94 00 UTC da grelha de alta resolução espacial 0.025°.

4ªs Jornadas Portuguesas de Engenharia Costeira e Portuária Angra do Heroísmo, 20 e 21 de Outubro de 2005

Figure 6 Mapa de alturas significativas das ondas correspondente ao dia 11-12-1994 às 12 UTC.

Figure 7 Mapa de período de pico das ondas correspondente ao dia 11-12-1994 ás 12 UTC.

Figure 8 Mapa de alturas significativas das ondas correspondente ao dia 09-07-1994 às 00 UTC. Grelha externa de 1° .

5. O INVERNO E O VERÃO

Para caracterizar a agitação marítima na região dos Açores para a época de Verão e de Inverno, foram calculados mapas mensais médios de altura significativa, períodos médios e do máximo espectral. A partir destas características médias pode-se observar que durante o mês de Julho (Verão) a agitação marítima reduz a energia notoriamente. Por exemplo, no mapa médio mensal de Julho os valores médios são da ordem dos 1.2 metros ao norte das Ilhas do grupo central. Contudo, o mapa médio de Hs para o mês de Fevereiro 1994 (Inverno) mostra valores da ordem dos 5 metros de altura significativa.

Já nos mapas médios de períodos de pico correspondente ao Inverno podem observar-se valores da ordem dos 15 segundos cobrindo a região do arquipélago açoriano na sua totalidade, o que qual indica um predomínio absoluto das vagas ("swell") de grande energia. Já o mapa médio de Verão exibe uma redução significativa do período médio até aos 7 segundos, representativo da época do Verão, onde existe uma notória redução da energia da agitação marítima. É importante salientar que nos mapas médios apenas se distingue o efeito de sombra das ilhas dos Açores.

Figure 9 Mapa médio mensal de alturas significativas das ondas para o mês de Fevereiro de 1994.

Figure 10 Mapa médio mensal de períodos de pico para o mês de Fevereiro de 1994.

Figure 11 Mapa médio mensal de alturas significativas para o mês de Julho de 1994.

Figure 12 Mapa médio mensal de períodos de pico para o mês de Julho de 1994.

Tendo em conta que na região de interesse ainda não se pode contar com dados de bóias que permitam estimar as características da agitação marítima, a validação deste trabalho foi realizada na Figueira da Foz (Figura 13), o que serve para avaliar as simulações, tendo em conta que as grelhas anteriores à de alta resolução chegam mesmo até Portugal Continental. As séries de tempo de Hs apresentadas foram calculadas pelo modelo fazendo o cálculo para 24 e 36 bandas direccionais.

De acordo com os resultados de outros autores [6], na região do Atlântico Norte pode-se dizer que o nosso parâmetro **bias** aparece um pouco elevado principalmente devido à ausência das Ilhas Açores na grelha de 1°, o que induz a priori um incremento da energia das ondas.

Tabela 2. Parâmetros estatísticos calculados para a altura significativa Hs (m) na grelha fina de 0.25° na localidade de Figueira da Foz. Mês considerado Fevereiro, 1994. Cálculos efectuados com o modelo WAM-PRO considerando 36 e 24 bandas direccionais.

Figueira da Foz	Com Açores KL=36	Sem Açores KL=36	Com Açores KL=24	Sem Açores KL=24
Coef. Corr.	0.85	0.84	0.85	0.84
Tendência (bias)	-0.46	-0.51	-0.43	-0.48
Raiz Quadrada Média dos Quadrados	0.92	0.97	0.89	0.94
Desvio Padrão.	0.79	0.82	0.78	0.81
Declive	0.88	0.86	0.88	0.87
Ìndice de Disperção	22.9	23.6	22.7	23.4
Hs média	3.70	3.75	3.65	3.71

Figure 13 Séries de tempo da altura significativa simuladas com o modelo WAM-PRO e medidas pela bóia direccional da Figueira da Foz (Latitude: 40.25° Longitude: 9.25°) durante o mês de Fevereiro de 1994.

7. CONCLUSÕES

O efeito sombra dos Açores contribui para atenuar ou para dissipar a energia das ondas oceânicas no Atlântico Norte, e reduz o seu impacto na Península Ibérica e em distâncias comparáveis. Para alguns eventos a Hs pode ser 1 m mais baixa comparado com o caso hipotético de ausência dos Açores.

Foi possível representar o efeito de sombra devido à implementação de uma versão de alta resolução para a região dos Açores. Mas o ideal seria a implementação de uma esquema de propagação de ondas no modelo de ondas que permita considerar o impacto das ilhas desde a grelha larga externa.

O estudo efectuado com alta resolução não foi validado devido à ausência de dados medidos disponíveis na região dos Açores.

O parâmetro estatístico tendência (*bias*) da altura significativa das ondas para Fevereiro de 1994 mostra um ligeiro aumento devido à ausência das ilhas dos Açores na grelha externa de um grau.

8. REFERÊNCIAS

[1] B. Morton, Britton, J. C., Frias Martins, A. M., (1998), Ecologia Costeira dos Açores. Sociedade Afonso Chaves, São Miguel, Açores, Portugal. ISBN: 972-97774-1-1.

[2] C. Guedes Soares, R. Weisse, J.C. Carretero e E. Alvarez (2002), A 40 years Hindcast of Wind, Sea Level and Waves in European Waters, Proceedings of the 21st International Conference on Offshore Mechanics and Arctic Engineering (OMAE'02), Paper OMAE2002-SR28604, 23-28 Junho 2002, Oslo, Noruega.

[3] D. Jacob and Podzum, R. (1997), Sensitivity studies with the Regional Climate Model REMO. Meteor. Atmos. Phys., 63, 119-129.

[4] E. Kalnay, M. Kanamitsu, R. Kistler, W. Collins, D. Deaven, L. Gandin, M. Iredell, S. Saha, G. White, J. Woollen, Y. Zhu, M. Chelliah, W. Ebisuzaki, W. Higgins, J. Janowiak, K.C. Mo, C. Ropelewski, J. Wang, A. Leetmaa, R. Reynolds, R. Jenne, and D. Joseph (1996), The NCEP/NCAR 40-Year Reanalysis Project. Bull. Am. Meteorol. Soc., 77, 437-471.

[5] J. Monbaliu, Padilla-Hernandez, J.C. Hargreaves, J.C. Carretero-Albiach, W. Luo, M. Sclavo, and H. Gunther (2000), The spectral wave model WAM adapted for applications with high spatial resolution, Coastal Eng., 41, 41-62.

[6] J. R. Bidlot, P. Janssen, B. Hansen, H. Gunther (1997), A modified set up of the advection scheme in the ECMWF wave model. ECMWF Tech. Memo- 237, ECMWF, Reading, Reino Unido, 31pp.

[7] F. Feser and Weisse R. (2003), Evaluation of a method to reduce the uncertainty in wind hindcasts performed with regional atmosphere models. Coastal Engineering, 48, 211-225.

[8] G. Komen J., Cavaleri, L., Donelan, M., Hasselmann, K. and Hasselmann, S. and P. A. E. M. Janssen (1994), Dynamics and Modeling of Ocean Waves, Cambridge University Press

[9] S. Brand Editor (2002), Hurricane Handbook for the North Atlantic Ocean. TECHNICAL REPORT TR 82-03. Naval Research Laboratory, Monterey, CA 93943-5502.

[10] S. Ponce de León, and Guedes Soares, C. (2005), On the sheltering effect of islands in ocean wave models, Journal of Geophysical Research., paper#2004JC002682 (in press).